Passer au contenu
Récents :
  • 15 common mistakes data scientists make in Python (and how to fix them)
  • Fast SMOTE upsampling with esmote
  • SMOTE for Imbalanced Classification with Python
  • Way beyond AlphaZero: Berkeley and Google work shows robotics may be the deepest machine learning of all | ZDNet
  • GitHub – MaartenGr/BERTopic: Leveraging BERT and c-TF-IDF to create easily interpretable topics.

Notes de Francis

  • Accueil
    • Notes
    • Uncategorized
  • Machine Learning
    • Deep Learning
    • NLP
    • GPU
    • Google AI
  • DevOps
    • Azure
    • Container
  • Code
    • Python
    • GitHub
    • Raspberry Pi
  • Design
    • Visual
  • Startup
    • Human Resources
  • Social Media
  • SEO
Notes 

Production Machine Learning Monitoring: Outliers, Drift, Explainers & Statistical Performance

13 décembre 2020 Francis

A practical deep dive on production monitoring architectures for machine learning at scale using real-time metrics, outlier detectors, drift detectors, metrics servers and explainers.

https://towardsdatascience.com/production-machine-learning-monitoring-outliers-drift-explainers-statistical-performance-d9b1d02ac158

Production Machine Learning Monitoring: Outliers, Drift, Explainers & Statistical Performance | by Alejandro Saucedo | Dec, 2020 | Towards Data Science
In this article we present an end-to-end example showcasing best practices, principles, patterns and techniques around monitoring of machine learning models in production. We will cover standard…
towardsdatascience.com

Partager :

  • Cliquez pour partager sur Twitter(ouvre dans une nouvelle fenêtre)
  • Cliquez pour partager sur Facebook(ouvre dans une nouvelle fenêtre)

Articles similaires

  • ← GPolS: A Contextual Graph-Based Language Model for Analyzing Parliamentary Debates and Political Cohesion – ACL Anthology
  • Making BERT Easier with Preprocessing Models From TensorFlow Hub →

Vous pourrez aussi aimer

How We Scaled Bert To Serve 1+ Billion Daily Requests on CPUs

28 mai 2020 Francis

OpenAI GPT-2 dataset. 1.5 billions hyperparameters

6 novembre 2019 Francis

OpenAI’s supercomputer collaboration with Microsoft marks its biggest bet yet on AGI | VentureBeat

20 mai 2020 Francis
Copyright © 2021 Notes de Francis. Tous droits réservés.
Theme ColorMag par ThemeGrill. Propulsé par WordPress.